The Stenger conjectures and the A-stability of collocation Runge-Kutta methods
نویسندگان
چکیده
Abstract Stenger conjectures are claims about the location of eigenvalues matrices whose elements certain integrals involving basic Lagrange interpolating polynomials supported on zeros orthogonal polynomials. In this paper, we show validity extended conjecture for families classical We also restricted Strenger a family Jacobi and generalized Laguerre A connection with -stability collocation Runge-Kutta methods is investigated.
منابع مشابه
Some implementation aspects of the general linear methods withinherent Runge-Kutta stability
In this paper we try to put different practical aspects of the general linear methods discussed in the papers [1,6,7] under one algorithm to show more details of its implementation. With a proposed initial step size strategy this algorithm shows a better performance in some problems. To illustrate the efficiency of the method we consider some standard test problems and report more useful detail...
متن کاملStability of Runge–Kutta–Nyström methods
In this paper, a general and detailed study of linear stability of Runge–Kutta–Nyström (RKN) methods is given. In the case that arbitrarily stiff problems are integrated, we establish a condition that RKN methods must satisfy so that a uniform bound for stability can be achieved. This condition is not satisfied by any method in the literature. Therefore, a stable method is constructed and some ...
متن کاملLinear Stability of Partitioned Runge-Kutta Methods
We study the linear stability of partitioned Runge–Kutta (PRK) methods applied to linear separable Hamiltonian ODEs and to the semidiscretization of certain Hamiltonian PDEs. We extend the] by presenting simplified expressions of the trace of the stability matrix, tr Ms, for the Lobatto IIIA–IIIB family of symplectic PRK methods. By making the connection to Padé approximants and continued fract...
متن کاملMulti-Symplectic Runge-Kutta Collocation Methods for Hamiltonian Wave Equations
A number of conservative PDEs, like various wave equations, allow for a multi-symplectic formulation which can be viewed as a generalization of the symplectic structure of Hamiltonian ODEs. We show that Gauss-Legendre collocation in space and time leads to multi-symplectic integrators, i.e., to numerical methods that preserve a symplectic conservation law similar to the conservation of symplect...
متن کاملAsymptotic Stability of Runge-kutta Methods for the Pantograph Equations
This paper considers the asymptotic stability analysis of both exact and numerical solutions of the following neutral delay differential equation with pantograph delay. ⎧⎨ ⎩ x′(t) +Bx(t) + Cx′(qt) +Dx(qt) = 0, t > 0, x(0) = x0, where B,C,D ∈ Cd×d, q ∈ (0, 1), and B is regular. After transforming the above equation to non-automatic neutral equation with constant delay, we determine sufficient co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2023
ISSN: ['1025-5834', '1029-242X']
DOI: https://doi.org/10.1186/s13660-023-03019-8